为什么使用volatile比同步代价更低?
同步的代价, 主要由其覆盖范围决定, 如果可以降低同步的覆盖范围, 则可以大幅提升程序性能.
而volatile的覆盖范围仅仅变量级别的. 因此它的同步代价很低.
volatile原理是什么?
volatile的语义, 其实是告诉处理器, 不要将我放入工作内存, 请直接在主存操作我.(工作内存详见java内存模型)
因此, 当多核或多线程在访问该变量时, 都将直接操作主存, 这从本质上, 做到了变量共享.
volatile的有什么优势?
1, 更大的程序吞吐量
2, 更少的代码实现多线程
3, 程序的伸缩性较好
4, 比较好理解, 无需太高的学习成本
volatile有什么劣势?
1, 容易出问题
2, 比较难设计
volatile运算存在脏数据问题
volatile仅仅能保证变量可见性, 无法保证原子性.
volatile的race condition示例:
public class TestRaceCondition {
private volatile int i = 0;
public void increase() {
i++;
}
public int getValue() {
return i;
}
}
当多线程执行increase方法时, 是否能保证它的值会是线性递增的呢?
答案是否定的.
原因:
这里的increase方法, 执行的操作是i++, 即 i = i + 1;
针对i = i + 1, 在多线程中的运算, 本身需要改变i的值.
如果, 在i已从内存中取到最新值, 但未与1进行运算, 此时其他线程已数次将运算结果赋值给i.
则当前线程结束时, 之前的数次运算结果都将被覆盖.
即, 执行100次increase, 可能结果是 < 100.
一般来说, 这种情况需要较高的压力与并发情况下, 才会出现.
如何避免这种情况?
解决以上问题的方法:
一种是 操作时, 加上同步.
这种方法, 无疑将大大降低程序性能, 且违背了volatile的初衷.
第二种方式是, 使用硬件原语(CAS), 实现非阻塞算法
从CPU原语上, 支持变量级别的低开销同步.
CPU原语-比较并交换(CompareAndSet),实现非阻塞算法
什么是CAS?
cas是现代CPU提供给并发程序使用的原语操作. 不同的CPU有不同的使用规范.
在 Intel 处理器中,比较并交换通过指令的 cmpxchg 系列实现。
PowerPC 处理器有一对名为“加载并保留”和“条件存储”的指令,它们实现相同的目地;
MIPS 与 PowerPC 处理器相似,除了第一个指令称为“加载链接”。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)
什么是非阻塞算法?
一个线程的失败或挂起不应该影响其他线程的失败或挂起.这类算法称之为非阻塞(nonblocking)算法
对比阻塞算法:
如果有一类并发操作, 其中一个线程优先得到对象监视器的锁, 当其他线程到达同步边界时, 就会被阻塞.直到前一个线程释放掉锁后, 才可以继续竞争对象锁.(当然,这里的竞争也可是公平的, 按先来后到的次序)
CAS 原理:
我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。
CAS使用示例(jdk 1.5 并发包 AtomicInteger类分析
/**
* Atomically sets to the given value and returns the old value.
*
* @param newValue the new value
* @return the previous value
*/ public final int getAndSet(int newValue) {
for (;;) {
int current = get();
if (compareAndSet(current, newValue))
return current;
}
}
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
这个方法是, AtomicInteger类的常用方法, 作用是, 将变量设置为指定值, 并返回设置前的值.它利用了cpu原语compareAndSet来保障值的唯一性.
另, AtomicInteger类中, 其他的实用方法, 也是基于同样的实现方式.比如 getAndIncrement, getAndDecrement, getAndAdd等等.
CAS语义上存在的"ABA 问题"
什么是ABA问题?
假设, 第一次读取V地址的A值, 然后通过CAS来判断V地址的值是否仍旧为A, 如果是, 就将B的值写入V地址,覆盖A值.但是, 语义上, 有一个漏洞, 当第一次读取V的A值, 此时, 内存V的值变为B值, 然后在未执行CAS前, 又变回了A值.此时, CAS再执行时, 会判断其正确的, 并进行赋值.
这种判断值的方式来断定内存是否被修改过, 针对某些问题, 是不适用的.
为了解决这种问题, jdk 1.5并发包提供了AtomicStampedReference(有标记的原子引用)类, 通过控制变量值的版本来保证CAS正确性.
其实, 大部分通过值的变化来CAS, 已经够用了.
jdk1.5原子包介绍(基于volatile)
包的特色:
1, 普通原子数值类型AtomicInteger, AtomicLong提供一些原子操作的加减运算.
2, 使用了解决脏数据问题的经典模式-"比对后设定", 即 查看主存中数据是否与预期提供的值一致,如果一致,才更新.
3, 使用AtomicReference可以实现对所有对象的原子引用及赋值.包括Double与Float,但不包括对其的计算.浮点的计算,只能依靠同步关键字或Lock接口来实现了.
4, 对数组元素里的对象,符合以上特点的, 也可采用原子操作.包里提供了一些数组原子操作类AtomicIntegerArray, AtomicLongArray等等.
5, 大幅度提升系统吞吐量及性能.